kernel/core.c (view raw)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#include "core.h"
#include "drivers/console.h"
#include "assembly.h"
CON_DRIVER *core_con;
char numeric[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' };
char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
void printk_hex_char(uint8_t c) {
core_con->write_c(hex[c >> 4]);
core_con->write_c(hex[c & 0x0F]);
}
void printk_uint32(uint32_t value) {
uint8_t* mem = (uint8_t*)(&value);
for (int i = 0; i < 4; i++) {
printk_hex_char(mem[3-i]);
}
}
void rek_printk_uint(unsigned int value) {
if (value > 0) {
rek_printk_uint(value / 10);
core_con->write_c(numeric[value % 10]);
}
}
void printk_uint(unsigned int value) {
if (value == 0) {
core_con->write_c('0');
return;
}
rek_printk_uint(value);
}
void printk_int(int value) {
if (value < 0) {
core_con->write_c('-');
printk_int(-value);
return;
} else if (value == 0) {
core_con->write_c('0');
return;
}
rek_printk_uint((unsigned int)value);
}
void memdump(void* start, uint32_t size) {
crit_enter();
uint8_t* _start = (uint8_t*)((uint32_t)start & 0xFFFFFFF0);
uint8_t* _end = (uint8_t*)(((uint32_t)start + size + 0xF) & 0xFFFFFFF0);
uint32_t first_line = (uint32_t)(_start);
uint32_t last_line = (uint32_t)(_end);
for (uint32_t i = first_line; i < last_line; i += 0x10) {
core_con->write_c(' ');
printk_uint32(i);
core_con->write_c(' ');
for (int j = 0; j < 0x10; j++) {
uint8_t* p = (uint8_t*)(i | j);
if (p >= (uint8_t*)(start) && p < (uint8_t*)(start + size)) {
printk_hex_char(*p);
core_con->write_c(' ');
} else {
core_con->write_c(' ');
core_con->write_c(' ');
core_con->write_c(' ');
}
}
core_con->write_c('\n');
}
crit_exit();
}
void stackdump(void) {
void *esp, *ebp;
__asm__ volatile ("mov %%esp, %0; mov %%ebp, %1" : "=m" (esp), "=m" (ebp));
printk("STACK DUMP:\n");
memdump(esp, (uint32_t)ebp - (uint32_t)esp);
}
void regdump(void) {
uint32_t eax, ebx, ecx, edx,
esi, edi, esp, ebp;
__asm__ volatile ( "mov %%eax, %0;"
"mov %%ebx, %1;"
"mov %%ecx, %2;"
"mov %%edx, %3;"
"mov %%esi, %4;"
"mov %%edi, %5;"
"mov %%esp, %6;"
"mov %%ebp, %7;"
: "=m" (eax),
"=m" (ebx),
"=m" (ecx),
"=m" (edx),
"=m" (esi),
"=m" (edi),
"=m" (esp),
"=m" (ebp));
printk(" EAX=%X EBX=%X ECX=%X EDX=%X\n", eax, ebx, ecx, edx);
printk(" ESI=%X EDI=%X ESP=%X EBP=%X\n", esi, edi, esp, ebp);
}
void printk(const char* fmt, ...) {
crit_enter();
va_list args;
va_start(args, fmt);
enum {
STATE_DEFAULT,
STATE_ARGUMENT,
} state = STATE_DEFAULT;
while (*fmt) {
if (state == STATE_ARGUMENT && *fmt == 'X') {
printk_uint32(va_arg(args, uint32_t));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 'x') {
printk_uint32(va_arg(args, uint32_t));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 'i') {
printk_int(va_arg(args, int));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 'u') {
printk_uint(va_arg(args, unsigned int));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 'p') {
printk_uint32(va_arg(args, uint32_t));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 's') {
const char* string = va_arg(args, const char*);
while (*string) { core_con->write_c(*string++); }
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == 'c') {
core_con->write_c(va_arg(args, int));
state = STATE_DEFAULT;
} else if (state == STATE_ARGUMENT && *fmt == '%') {
core_con->write_c('%');
state = STATE_DEFAULT;
} else if (*fmt == '%') {
state = STATE_ARGUMENT;
} else {
core_con->write_c(*fmt);
}
fmt++;
}
crit_exit();
}
void kpanic(const char* string) {
cli();
printk(string);
core_con->write_c('\n');
// register dump / stack dump
regdump();
stackdump();
while (1) {}
}
void kfault(const char* string, INTERRUPT_FRAME *frame, uint16_t err_code) {
cli();
printk("%s\n", string);
printk("EIP: %p\n", frame->eip);
printk("CS: %p\n", frame->cs);
printk("EFLAGS: %p\n", frame->eflags);
// register dump / stack dump
regdump();
stackdump();
while (1) {}
}
uint32_t crit_sect_counter = 0;
uint32_t if_state = 0;
void crit_enter(void) {
if (crit_sect_counter++ == 0) {
if_state = get_eflags() & (1 << 9);
cli();
}
}
void crit_exit(void) {
if (--crit_sect_counter == 0) {
uint32_t eflags = get_eflags() | if_state;
set_eflags(eflags);
}
}
uint32_t crit_stash(void) {
uint32_t __csc = crit_sect_counter;
crit_sect_counter = 0;
if (__csc > 0) {
if_state = get_eflags() & (1 << 9);
sti();
}
return __csc;
}
void crit_restore(uint32_t state) {
crit_sect_counter = state;
if (crit_sect_counter > 0) {
uint32_t eflags = get_eflags() | if_state;
set_eflags(eflags);
}
}
void crit_reset(void) {
crit_sect_counter = 0;
uint32_t eflags = get_eflags() | if_state;
set_eflags(eflags);
}
void hard_reset(void) {
outb(0xFE, 0x64);
}
int core_init(void) {
core_con = std_con;
return core_con->init();
}